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In this lecture, | will introduce the idea of a system to which we apply signals at the
input and produce signals at the output. Any physical setup can take on a “system”
view. Engineers model the system using mathematics. The main goal of system
analysis is to be able predict its behaviour under different conditions. In so doing,
we can design modifications to the system to give us desirable behaviour.

One of the most useful mathematical tools to analyse and thus, predict, systems is
the Laplace transform. This lecture will introduce the theory of Laplace transform
and show how it may be used to model systems as transfer functions.




10 things you have learned about signals (1)

1. Signals can be represented in time domain or frequency domain.
2. Any signal can be made up from weighted sum of sinusoidal signals.

3. Asinusoid at frequency o and amplitude A can be an everlasting sine
wave (A sin ot), cosine wave (Acos ot) or exponential (A/2 el®t).
Furthermore, two sinusoids at different frequencies have NOTHING in
common.

4. For a time-limited signal, moving between time and frequency domain
is done through Fourier Transform.

5. A periodic signal is represented in the frequency domain in Fourier
series, where the fundamental frequency f; is 1/period of the signal,
and all the other frequency are integer multiple of f,.
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Up to now, we have been focusing on the processing of electrical signals. In five
short lectures, we have covered quite a lot of ground. It is therefore time to review
what you have learned so far. Here are the TEN key teachings of what we have
covered up to now:

1.

Signals in time-domain and frequency-domain views - This is fundamental to
signal processing. Depending on what you want to do with the signal, processing
in one of the two domains will proof beneficial. A good example is shown earlier
when a sinewave is corrupted by noise. In time-domain, it looks a mess. In
frequency-domain, the energy is spread over the entire spectrum and therefore
the sinewave is not “masked” by the noise.

. Any signal can be represented by weighted sum of sinusoids - This is the

essence of Fourier transform, and it is how we convert from time domain to
frequency domain.

. Sinusoid as sine, cosine or exponential functions - Sinusoids form the “building

blocks” of signals in frequency domain. If you project a sinewave of one
frequency onto another sinewave of a different frequency, no matter how close
they are in frequency, the projection is zero. This implies that the two sinewaves
are “orthogonal” and they have nothing in common. This is also why sinusoids
form good building blocks.

. Fourier Transform - converts a time-limited signal with finite energy from time-

domain to frequency-domain.
o0

X (@) = Flx()] = / x(t)e~ " dt

—0o0




10 things you have learned about signals (2)

6. You must sample a signal at a sampling frequency fs which is at least
twice that of the maximum signal frequency fmax: fs = 2*fmax-

7. When sampling signal at fs, the spectrum of the original signal is
repeated at EVERY multiple of sampling frequency, i.e = nfg, n =1, 2, 3...

8. If you sample a signal which has a frequency component higher than fs/2,
aliasing occurs (which results in spectral folding).

9. When you extract a portion of a signal, you effectively multiply the signal
with a rectangular window, which results in spreading of energy to
neigbouring frequency components. This is known as “leakage”.

10. You can reduce this leakage by multiplying your signal with a special
window function which has smooth instead of shape edges.
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10.

Periodic signal uses Fourier series in frequency domain - The fundamental
frequency fy = 1/T,, where Ty is the period of the signal, and all other
components are called harmonics, and they are at integral multiples of f;.

Sampling theorem - One must sample at f; samples per second, which is at least
TWICE that of the maximum frequency of the signal fmax: f¢ > 2*fmax.

Spectrum of a sample signal - When you sample a signal, the spectrum of the

continuous time signal get repeated indefinitely at multiple of f, i.e. at nf,,
where n is all integers except 0: =1, =2 ....

Sampling a signal too slowly corrupts it through aliasing - If you use a sampling
frequency fs which is lower than 2*fmax, aliasing, i.e. spectral folding occurs and
this will corrupt the signal in a way that you cannot go back to continuous time
without error.

Rectangular windows - When extracting a portion of a signal to analyse, you are
effectively multiplying the signal with a rectangular window. This results in
spectral spreading and leakages - signal energy leaked to its neighbouring
frequency components.

Better to use window functions with smooth edges - Leakages can be reduced

significantly by using other they of windowing functions, such as Hamming and
Hanning windows.



What are Systems?

+ Systems are used to process signals to modify or extract information
+ Physical systems — characterized by their input-output relationships

+ E.g. electrical systems are characterized by voltage-current relationships
for components and the laws of interconnections (i.e. Kirchhoff’s laws)

¢ From this, we derive a mathematical model of the system
+ “Black box” model of a system:

XA(1) —— —— V(1)
= . SYSTEM
) °
~ ° MODEL ° s
e L ? ®
X:(1} == —— y(?)
L1.6
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Here is a general view of a SYSTEM. It processes signals from the input xj(t) and
produces signals yi(t) at the output.

What we are attempting to do in this module is to learn how to characterize and
model the input-to-output relationship. For example, we have already learned to
calculate the relationship between output voltage and input voltage in an
operational amplifier from your Year 1 Electronics 1 module.

Generally, we use mathematics to model the system behaviour, and produce some
form of equations relating y|(t) to xj(t).

Since we don’t really care what is exactly inside the system beyond this input-output
relationship, we call this a “Black box” model of the system.



Linear Systems (1)

¢ Alinear system exhibits the additivity property:

if x1— Y X— ¥ | then X1 +X—> Y1+

+ It also must satisfy the homogeneity or scaling property:

if xX—Yy then kx — ky

¢ These can be combined into the property of superposition:

if X1 —> Y1 X —> W then kl.X] + ngg —> klyl -1 k?_yz

¢ A non-linear system is one that is NOT linear (i.e. does not obey the
principle of superposition)
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One of the most important property of any system is linearity. A linear system
exhibits two important properties: 1) additive: if x1 leads to y1, x2 leads to y2, then
x1+x2 leads to y1+y2; 2) scaling: if x leads to y, kx leads to ky.

These two properties can be combined to form the general form of superposition, a
principle that we have already covered extensively last year.

Many physical systems are NOT inherently linear. For example, we have already
considered that our ears are sensitive to sound volume in a logarithmic manner. An
incandescent light bulb produce light output as a quadratic function (i.e. square) of
the input voltage.

However, we can usually approximate a non-linear system as linear over a range of
signal, particularly if the range is small. Therefore, we often perform the so-called
“small signal analysis”, restricting the signal to perturbation around a certain
operating point.

We will examine this in Lab 3 in more details later.






Linear Systems (3)

¢ A system’s output for t > 0 is result of 2 independent causes:
1. Initial conditions when t = 0 (zero-input response)
2. Input x(t) fort > 0 (zero-state response)

¢ Decomposition property:

Total response = zero-input response + zero-state response

l I
y(t) = vc(0) + Rx(r) + -/ x(t)dr t>0
C o W,
"
zero-state response

zero-input response

x(t) — - () — _I:> s Vo (1) o+ x(t) —» — ,(7)

— L1.7-1
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Now it is important to appreciate that given a system, the output response is made
up of two parts:

1. Theinitial condition, which is also called the zero-input response. This is the
system behaviour before any input is applied (as if the input is grounded).

2. The zero-state response. This is the the system behaviour of the system to the

input assuming that the internal state (such as the capacitor voltage) are all
initially zero.



Time-Invariant Systems

¢ Time-invariant system is one whose parameters do not change with time:

X(I) !/\ ym : R 3
o] = o of T 1— of T

! y(@) yt—T)

0, Tl System delayby |___,
T seconds

() xt—T) ¥t —T)

— | TiSystem —

o Linear time-invariant (LTI) systems — main type of systems for this course.

L1.7-2
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Another important classification of any systems is time-invariant vs time-variant.

A time-invariant system means that the characteristic is NOT change (invariant) over

time. Itis fixed and no dependent on when you use the system, today, tomorrow or
next year.

In this module, we only consider systems that are LINEAR, and TIME-INVARIANT, and
call this LTI system for short.



System modelling using ODEs

¢ Many systems in electrical and mechanical engineering where input and
output are related by ordinary differential equations (ODEs)

¢ For example:

v (@) + vp@®) +v.(1)=V
M %(t)+ K x(6)+ K x(t) = F(t)

2
d v, dv,
LC—5+RC—=+v. =V
dt dt
L1.8
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You are familiar with modeling systems with differential equations. Assuming that all
voltages and currents were O fort < 0. Att =0, the switch closes. We are
interested in find out v(t) as a function of time.

You can easily write an equation as shown by summing the voltage around the loop
(Kirkoff’s voltage law — voltage around a loop in a circuit sums to zero). This
provides us with a differential equation, which can be solved for v(t).

Similar, consider a mechanical system with a mass M, hanging from the ceiling with
a damper with damping coefficient Kd and a spring with a Young’s coefficient Ks. If
you apply a force F(t) the mass, what is x(t)?

Summing all the forces together in the vertical direction, we get the differential
equation shown. The gravitation force is proportional to d?x/dt2. The force of the
damper if proportional to dx/dt. The force on the spring is proportional to x(t) itself.

These differential equations capture the behaviour of the systems from which we
can predict the output for any input, whether it is under rapid change (transient
behaviour) or the input is fixed (steady-state behaviour). Although modeling
systems as differential equation works, solving ODE is a bit tedious. Laplace
transform is a method to solve ODEs without pain!



System Analysis in time and frequency domains

time-domain | y(¢) = h(¢) * x(?) Y(w) = Hw)xX(w)

X(¢) analysis "N X ()
using ODEs or

Impulse response

frequency-domain

x(t) mF *\ analysis 1 By (1)

h(t) H(w)
+ Analyse system using differential + Analyse system using frequency
equations or using the system’s response H(o)

impulse response h(t) (later lecture)
+ Analyse system behaviour in time-domain via solving differential equations can be
tedious.
Could use impulse response and convolution (later topic), but could be expensive.
+ Using Fourier transforms and frequency response to analyse (and predict behaviour
of) a system has limitations.
+ Frequency response is only useful in predicting steady-state behaviour of a
system, not transient behaviour.

+ Alternative — use Laplace transform to transform both system and signals to the
complex Laplace variable, the s-domain.
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Before we consider Laplace transform theory, let us put everything in the context of
signals being applied to systems.

If we take a time-domain view of signals and systems, we have the top left diagram.
The input x(t) is a function of time (i.e. a waveform you see on a scope), and the
system is modeled as ODEs. Alternatively you may also model the time-domain
system through its response to an impulse at the input. The system response to an
impulse is known as “impulse response” and is usually represented as h(t). We will
be covering impulse response in a later lecture.

In time-domain analysis, you get y(t) either by solving the ODEs or you could derive
y(t) from x(t) and h(t) through an operation known as “convolution”. This is again
something that will be covered later in this module.

However, if you operate in the frequency domain (from now on, | will drop the
hyphen), we take the Fourier transform of the input signal: x(t) = X(®). We then
model the system with its frequency response H(w). The output (in the frequency
domain) Y(w) is given by Y(®) = X(®) x H(®), a simple multiplication.

In other words, the frequency response H(w) is a model of how the system passes
(or suppresses) different frequency components in the signal X(®). This is the
process whereby you adjust your mobile phone playing music to emphasize low
frequencies (bass) to get stronger beats in pop music, or to emphasize higher
frequencies (treble) to gain more clarity in classical music.



Laplace Transform (1)

o Laplace Transform is a method that converts differential equations in time-
domain into algebraic equations in complex Laplace variable s-domain.

+ Definition of Laplace Transform [ is:

Fourier Transform
LIX(®)] = X(s) =j0 x(e Stdt  |F[x()] =J x(t)e J@tqt

s=a+jw

¢ Once transformed to the s-domain, analysis and prediction of the
system becomes easy if we know the system’s characteristic H(s),

which is also called the transfer function (more later)

X(s) Y(s)=H(s)X(s)
s-domain
x(¢) wm [ mip analysis fr— El »y(1)
H(s) L4.1
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Laplace transform is in someway similar to Fourier Transform. However, it is more
general, and arguably more powerful.

It converts differential equations in the time domain into algebraic equations in
another domain with a complex Laplace variable s. Let us call this the s-domain.

The mathematical definition of the general Laplace Transform (also called bilateral
Laplace Transform) is:

LIx(D)]= X (s)= [ x(t)e™ di ,
- wheres = a + jw

For this course, we assume that the signal and the system are both causal, i.e. x(t) =

0 for all t < 0. Therefore we get the equation shown in the slide, where the limits of

integration is from 0 and NOT -oo,

Similar to Fourier domains, we can transform input signal x(t) to the Laplace or s-
domain as X(s), and we can model the system in the s-domain using its response
H(s). This is also called the Transfer Function. If you known X(s) and H(s), then the
output in the s-domain Y(s) = H(s) X(s) — very similar to the Fourier analysis we did
before.

We will consider the relationship (similarity) between Fourier transform and Laplace
transform later. For now, you can regard Fourier transform is a special case of
Laplace transform. So Laplace is more general. Laplace transform becomes Fourier

transform if s = a + jw where a=0. Then s = jw.




Laplace Transform (2)

+ Laplace Transform obeys laws of linearity:
L [,"31;171 (f) + }:'32;1“2(f)] - ‘,-“31[,[;1'»1 (IL)] + 32£ [l‘-z(t)]

¢ The Laplace transform of an impulse function:

6] = j:’a(t)e-“dt=1 for all s se] o 1

¢ The Laplace transform of a unit step function:

u@)]= [ u@yedi = "ear |
S

1 o ]
—st
=—— =— Res>0
S 0 S
L4.1
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Before we go any further, let us consider the Laplace transforms of interesting
signals and functions.

First, you must remember that Laplace transform, just like Fourier, obeys the law of
linearity — it is a linear tranform.

Now let us consider the Laplace transform of an impulse d(t). This simple
integration shows that:

qs@] o 1

This is similar to the case

of Fourier transform shown in Lecture 4, slide 7.

The Laplace transform of a unit step signal u(t) is % Again you can derive this
through simple integration. Remember that et 3 OwhentDoo.



Laplace Transform (3)

o Laplace Transform of e** u(¥):

Lle”u(t)]= _[ “eve ™ dt 1
¢ Lle”u(t)] & —

SO S—a
= _[ e Vdt=———
0 s—a
+ Laplace Transform of cos @, t u(®):
1 Joot —joyt
L[cos wyt u(t)] = — L[’ u(t) +e ' u(t)]
2 S
Llcosatu(®)] <& ———
1 1 N 1 s S + o,
2| s-jw, s+jo,| '+,
L4.1
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Now consider Laplace transform of a causal exponential signal et u(t). (Note that
multiplying e by u(t) makes the signal causal because u(t) chops off everything
wheret<0.)

Again simple integration yields the result you see here.

From this, we can also derive the Laplace transform for a causal cosine signal at
frequency mg.



Laplace Transform (4)

dt

¢ Laplace Transform of a differentiator x(1) =

dx(t), _ = dx(@) -
= 1=/ e

+ It can be shown (using integration by parts) that this result in:

L#(0)] = sX (5) - x(0)

+ Ifx(0) =0 (i.e. zero initial condition), then ﬁ[X(f)] = SX(S)

o Therefore, differentiation in the time domain is multiplication by s in the s-

domain:
d L
a -
PYKC 28 Jan 2026 DE2 - Electronics 2 Lecture 7 Slide 14

We can also derive the Laplace transform for a function. For example, what is the LT
of a differentiation function d/dt?

As shown here, the result is also pretty simple. x(0) is the initial value of x at t = 0.

If x(0) = 0, i.e. zero initial condition, then L(dx(t)/dt) = s X(s). This is a very important
result.



Laplace Transform (5)

t
+ Laplace Transform of an integrator f T=0x(r)dr

Let g(t) = [ ; (DT

then x(¢)= %, and g(0)=0

¢ From last slide

L{x(0)] = L[g(D)] = sG(s) - g(0) = sG(5)

¢ Therefore

1
Llg(t)]= ;X (s)
+ Therefore, integration in the time domain is multiplication by 1/s in the s-

domain: t
— S
t=0
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Similarly, we can compute the Laplace transform of the integration function. This is
slightly more complicated.

t
We first express the integration of x(t) as g(t): g(1) = f7:=0 x(t)dt
This leads to:  x(¢) = @, and g(0)=0
t

If we now take Laplace transform on both sides, we get:
LIx()] = LIg()] = sG(5) - g(0) = sG(s)

Therefore, LT of an integrator is the same as multiplying the input X(s) by 1/s in the
s-domain.



Laplace transform Pairs (1)

+ Finding inverse Laplace transform requires integration in the complex
plane — beyond scope of this course.

+ So, use a Laplace transform table (analogous to the Fourier Transform

table).
No. x() X(s)
o | (1) 1
2 t :
* u(t) 5
1
3 tu(t) o2
n!
4 t"u(t) gn+!
L4.1
PYKC 28 Jan 2026 DE2 - Electronics 2 Lecture 7 Slide 16

The table of Laplace transform pairs (going both directions) is taken from Lathi’s
book. The first TWO shown here are useful, particularly for signals and systems.

The first pair is the impulse function. The LT is the constant 1.

Pair 2 is the LT of the unity step function, and we have seen in L6 S13 that this is
computed to be 1/s.



Laplace transform Pairs (2)

1
* Al
5 e*u(t) Sk
1
6 teMu(r) G2
n!
7 t"eMu(t) Gt
s
* 8a cos bt u(t) m
) b
* 8b sin bt u(t) m
ar s+a
* 9a e " cos btu(t) m
—at a2 b
* 9b e 'sin btu(t) m L4.1
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Pair 5 here is MOST important. You will find that most systems will have terms in

the form of—/1 in the s-domain. The time domain equivalent of this is a causal

exponential function e’“u(t). The unity step function u(t) makes this causal,
meaning that it is zero for t < 0. The term e is the general solution for most
differential equations. It represents the natural response of many physical systems.

Pairs 8a and 8b are also important because they represent the LT of causal sine and
cosine waveforms.

Finally, 9a and 9b represents exponential decaying, causal sine and cosine,
something that occurs frequently in the physical world.



Laplace Transform vs Differential Equations

¢ Since x(t)
L|——| =sX(s)
dt dk C
we can generalise higher order differential as: ﬁ sk

+ Therefore, consider the mechanical system in slide;m

M 5(6)+ K x(1)+ K x(t) = F(2)

Ks

Kd -l-

o Apply Laplace transform assuming zero initial condition: ¢ X

Ms* X (s)+ K sX (s)+ K X(s) = F(s) |

(Ms? + Kgs + K)X(s) = F(s)

— H(s) = X(s) _ 1 H(s) is
TR v Bl TRANSFER FUNCTION
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Now we are ready to generalize. Assuming zero initial condition, L[dx/dt] = sX(s), it
follows that L[d?x/dt?] is s2X(s) ..... L[dx/dt"] is s*X(s).

So let us take our mechanical system previously considered in Slide 10. The second-
order differential equation:

M (1) + K 5(t)+ K x(t) = F(7)
Can be converted to the Laplace s-domain (zero initial condition) as:
2
Ms" X (s)+ K sX(s)+ K X(s)=F(s)
Re-arrange this a bit, and express this as OUTPUT/INPUT in the s-domain, we get:

_X(s) _ 1

H(s) 5
F(x) Ms +K s+K

This is a very important results. H(s) is known as Transfer function, and it
characterizes the system in the s-domain as a 2" order polynomial function in the
complex Laplace variable s. This is an algebraic equation. Since Y(s) = H(s) X(s), a
simple multiplication, we can predict the output by simple algebraic calculations. No
more fiddling with differential equations!



Using Laplace Transform to model a system

¢ Here is another mechanical system with a wheel (taken from past year’s
examination paper):

T = external torque on the wheel
a = angle of rotation of the wheel
J =moment of inertia

k = shaft stiffness

¢ = damping coefficent

¢ The relationship between the wheel angle a and the external torque T is
given by the following equation:
d%a

da
T_ka—CE_]W—O

¢ Apply Laplace transform assuming zero initial condition:

T(s) — ka(s) — csa(s) —Js?a(s) =0
Hence, a(s) 1
H(s) = T(s) =]s2 +cs+k
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A torsion system with a heavy wheel W has a moment of inertia J. It is connected to
a stationary anchor through a shaft S with a shaft stiffness of k as shown in Figure
Q4. The movement of the wheel is damped by a friction pad F with a damping
coefficient of c. An external torque T is acting on the wheel in the direction shown.
The angle of rotation of the wheel a is measured from its stationary condition. The
relationship between the wheel angle a and the external torque T is given by the

following equation:
da d’a
T—ka—c——]—=0
dt dt?

Instead of using differential equation to model the system, we can take Laplace
Transform on both sides of the equation:

T(s) — ka(s) — csa(s) — Js?a(s) =0

ouput(s) _ a(s)
input(s) - T(s)
Hence, we turn a differential equation in time domain to an algebraic equation in
complex frequency s-domain.

Now we can derive the transfer function. H(S) =

a(s) 1 1

k
= = — ]
T(s) Js?+cs+k k52+§s+17(

H(s) =



Three Big Ideas

1. Laplace transform is useful for analysing systems. It maps time domain
behaviour to the complex frequency s-domain where s = a + jw. This
contrasts with Fourier transform which maps to frequency (or w) domain.

2. Laplace transform converts mathematical models of real systems described
using differential equations in time domain to algebraic equation in s-domain.
This is possible because:

L(%) =s and L(di:z) = s?

3. Transfer function of a system H(s) is the Laplace transform of the output
signal Y(s) divided by the Laplace transform of the input signal X(s):

__ OutputY(s)
H(S) " Input X(s)
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Here are the three things that you should know and remember, and even better,
understand.



