
In this lecture, I will introduce the idea of a system to which we apply signals at the 
input and produce signals at the output.  Any physical setup can take on a “system” 
view.  Engineers model the system using mathematics.  The main goal of system 
analysis is to be able predict its behaviour under different conditions.  In so doing, 
we can design modifications to the system to give us desirable behaviour.

One of the most useful mathematical tools to analyse and thus, predict, systems is 
the Laplace transform.  This lecture will introduce the theory of Laplace transform 
and show how it may be used to model systems as transfer functions.
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Up to now, we have been focusing on the processing of electrical signals.  In five 
short lectures, we have covered quite a lot of ground.  It is therefore time to review 
what you have learned so far.  Here are the TEN key teachings of what we have 
covered up to now:
1. Signals in time-domain and frequency-domain views – This is fundamental to 

signal processing. Depending on what you want to do with the signal, processing 
in one of the two domains will proof beneficial.  A good example is shown earlier 
when a sinewave is corrupted by noise.  In time-domain, it looks a mess.  In 
frequency-domain, the energy is spread over the entire spectrum and therefore 
the sinewave is not “masked” by the noise. 

2. Any signal can be represented by weighted sum of sinusoids – This is the 
essence of Fourier transform, and it is how we convert from time domain to 
frequency domain.

3. Sinusoid as sine, cosine or exponential functions – Sinusoids form the “building 
blocks” of signals in frequency domain.  If you project a sinewave of one 
frequency onto another sinewave of a different frequency, no matter how close 
they are in frequency, the projection is zero.  This implies that the two sinewaves 
are “orthogonal” and they have nothing in common.  This is also why sinusoids 
form good building blocks.

4. Fourier Transform – converts a time-limited signal with finite energy from time-
domain to frequency-domain.
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10 things you have learned about signals (1)

1. Signals can be represented in time domain or frequency domain.

2. Any signal can be made up from weighted sum of sinusoidal signals.

3. A sinusoid at frequency w and amplitude A can be an everlasting sine 
wave (A sin wt), cosine wave (Acos wt) or exponential (A/2 ejwt). 
Furthermore, two sinusoids at different frequencies have NOTHING in 
common.

4. For a time-limited signal, moving between time and frequency domain 
is done through Fourier Transform.

5. A periodic signal is represented in the frequency domain in Fourier 
series, where the fundamental frequency f0 is 1/period of the signal, 
and all the other frequency are integer multiple of f0.



5. Periodic signal uses Fourier series in frequency domain – The fundamental 
frequency f0 = 1/T0, where T0 is the period of the signal, and all other 
components are called harmonics, and they are at integral multiples of f0.

6. Sampling theorem – One must sample at fs samples per second, which is at least 
TWICE that of the maximum frequency of the signal fmax:   fs ≥ 2*fmax.

7. Spectrum of a sample signal – When you sample a signal, the spectrum of the 
continuous time signal get repeated indefinitely at multiple of fs, i.e. at ±n fs, 
where n is all integers except 0: ±1, ±2 ….

8. Sampling a signal too slowly corrupts it through aliasing – If you use a sampling 
frequency fs which is lower than 2*fmax, aliasing, i.e. spectral folding occurs and 
this will corrupt the signal in a way that you cannot go back to continuous time 
without error.

9. Rectangular windows – When extracting a portion of a signal to analyse, you are 
effectively multiplying the signal with a rectangular window. This results in 
spectral spreading and leakages – signal energy leaked to its neighbouring 
frequency components.

10. Better to use window functions with smooth edges – Leakages can be reduced 
significantly by using other they of windowing functions, such as Hamming and 
Hanning windows.
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10 things you have learned about signals (2)

6. You must sample a signal at a sampling frequency fs which is at least 
twice that of the maximum signal frequency fmax:   fs ≥ 2*fmax.  

7. When sampling signal at fs, the spectrum of the original signal is 
repeated at EVERY multiple of sampling frequency, i.e ± nfs, n = 1, 2, 3...

8. If you sample a signal which has a frequency component higher than fs/2, 
aliasing occurs (which results in spectral folding).

9. When you extract a portion of a signal, you effectively multiply the signal 
with a rectangular window, which results in spreading of energy to 
neigbouring frequency components. This is known as “leakage”.

10. You can reduce this leakage by multiplying your signal with a special 
window function which has smooth instead of shape edges.



Here is a general view of a SYSTEM. It processes signals from the input xj(t) and 
produces signals yk(t) at the output.
What we are attempting to do in this module is to learn how to characterize and 
model the input-to-output relationship.  For example, we have already learned to 
calculate the relationship between output voltage and input voltage in an 
operational amplifier from your Year 1 Electronics 1 module.  
Generally, we use mathematics to model the system behaviour, and produce some 
form of equations relating yk(t) to xj(t).
Since we don’t really care what is exactly inside the system beyond this input-output 
relationship, we call this a “Black box” model of the system.
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What are Systems?

 Systems are used to process signals to modify or extract information
 Physical systems – characterized by their input-output relationships
 E.g. electrical systems are characterized by voltage-current relationships 

for components and the laws of interconnections (i.e. Kirchhoff’s laws)
 From this, we derive a mathematical model of the system
 “Black box” model of a system: 

SYSTEM
MODEL

L1.6



One of the most important property of any system is linearity.  A linear system 
exhibits two important properties: 1) additive: if x1 leads to y1, x2 leads to y2, then 
x1+x2 leads to y1+y2;   2) scaling: if x leads to y, kx leads to ky.
These two properties can be combined to form the general form of superposition, a 
principle that we have already covered extensively last year.

Many physical systems are NOT inherently linear.  For example, we have already 
considered that our ears are sensitive to sound volume in a logarithmic manner.  An 
incandescent light bulb produce light output as a quadratic function (i.e. square) of 
the input voltage.
However, we can usually approximate a non-linear system as linear over a range of 
signal, particularly if the range is small.  Therefore, we often perform the so-called 
“small signal analysis”, restricting the signal to perturbation around a certain 
operating point.
We will examine this in Lab 3 in more details later.
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 A linear system exhibits the additivity property:

   if    then

 It also must satisfy the homogeneity or scaling property:

   if    then

 These can be combined into the property of superposition:

   if    then

 A non-linear system is one that is NOT linear (i.e. does not obey the 
principle of superposition)

Linear Systems (1)

L1.7-1





Now it is important to appreciate that given a system, the output response is made 
up of two parts:  
1. The initial condition, which is also called the zero-input response.  This is the 

system behaviour before any input is applied (as if the input is grounded).
2. The zero-state response. This is the the system behaviour of the system to the 

input assuming that the internal state (such as the capacitor voltage) are all 
initially zero.
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Linear Systems (3)

 A system’s output for t ³ 0 is result of 2 independent causes:
1. Initial conditions when t = 0  (zero-input response)
2. Input x(t) for t ³ 0  (zero-state response)

 Decomposition property:
 
 Total response = zero-input response + zero-state response

L1.7-1
! "! " ! "! " ! "! " ! "!" #! " #! " +=



Another important classification of any systems is time-invariant vs time-variant.
A time-invariant system means that the characteristic is NOT change (invariant) over 
time.  It is fixed and no dependent on when you use the system, today, tomorrow or 
next year.
In this module, we only consider systems that are LINEAR, and TIME-INVARIANT, and 
call this LTI system for short.
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 Time-invariant system is one whose parameters do not change with time:

 Linear time-invariant (LTI) systems – main type of systems for this course.

L1.7-2

Time-Invariant Systems

TI System delay by
T seconds

TI Systemdelay by
T seconds



You are familiar with modeling systems with differential equations. Assuming that all 
voltages and currents were 0 for t < 0.    At t = 0, the switch closes.  We are 
interested in find out vc(t) as a function of time.

You can easily write an equation as shown  by summing the voltage around the loop 
(Kirkoff’s voltage law – voltage around a loop in a circuit sums to zero).  This 
provides us with a differential equation, which can be solved for vc(t).

Similar, consider a mechanical system with a mass M, hanging from the ceiling with 
a damper with damping coefficient Kd and a spring with a Young’s coefficient Ks.  If 
you apply a force F(t) the mass, what is x(t)?  

Summing all the forces together in the vertical direction, we get the differential 
equation shown.  The gravitation force is proportional to d2x/dt2.   The force of the 
damper if proportional to dx/dt.  The force on the spring is proportional to x(t) itself.  

These differential equations capture the behaviour of the systems from which we 
can predict the output for any input, whether it is under rapid change (transient 
behaviour) or the input is fixed (steady-state behaviour).  Although modeling 
systems as differential equation works, solving ODE is a bit tedious.  Laplace 
transform is a method to solve ODEs without pain!
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L1.8

System modelling using ODEs

 Many systems in electrical and mechanical engineering where input and 
output are related by ordinary differential equations (ODEs)

 For example:

LC d
2vC
dt2

+ RC dvC
dt

+ vC =V

vL (t) + vR(t) + vc(t) =V
M  !!x(t)+ Kd !x(t)+ Ksx(t) = F (t)



Before we consider Laplace transform theory, let us put everything in the context of 
signals being applied to systems.
If we take a time-domain view of signals and systems, we have the top left diagram.  
The input x(t) is a function of time (i.e. a waveform you see on a scope), and the 
system is modeled as ODEs.  Alternatively you may also model the time-domain 
system through its response to an impulse at the input. The system response to an 
impulse is known as “impulse response” and is usually represented as h(t). We will 
be covering impulse response in a later lecture. 
In time-domain analysis, you get y(t) either by solving the ODEs or you could derive 
y(t) from x(t) and h(t) through an operation known as “convolution”.  This is again 
something that will be covered later in this module.
However, if you operate in the frequency domain (from now on, I will drop the 
hyphen), we take the Fourier transform of the input signal:   x(t) è X(w).  We then 
model the system with its frequency response H(w).   The output (in the frequency 
domain)  Y(w) is given by   Y(w) = X(w) x H(w), a simple multiplication.
In other words, the frequency response H(w) is a model of how the system passes 
(or suppresses) different frequency components in the signal X(w).  This is the 
process whereby you adjust your mobile phone playing music to emphasize low 
frequencies (bass) to get stronger beats in pop music, or to emphasize higher 
frequencies (treble) to gain more clarity in classical music.
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System Analysis in time and frequency domains

 Analyse system using differential 
equations or using the system’s 
impulse response h(t)  (later lecture)

time-domain
analysis

using ODEs or
Impulse response

h(t)

! "! "
y(t) = h(t)* x(t)

frequency-domain
analysis

H(w)
! "! " F

X (ω)
! "! "F -1

 Analyse system using frequency 
response H(w)

 Analyse system behaviour in time-domain via solving differential equations can be 
tedious.

 Could use impulse response and convolution (later topic), but could be expensive.
 Using Fourier transforms and frequency response to analyse (and predict behaviour 

of) a system has limitations.  
 Frequency response is only useful in predicting steady-state behaviour of a 

system, not transient behaviour.
 Alternative – use Laplace transform to transform both system and signals to the 

complex Laplace variable, the s-domain.

𝑌 𝜔 = 𝐻 𝜔 ×𝑋 𝜔



Laplace transform is in someway similar to Fourier Transform.  However, it is more 
general, and arguably more powerful.
It converts differential equations in the time domain into algebraic equations in 
another domain with a complex Laplace variable s.  Let us call this the s-domain.
The mathematical definition of the general Laplace Transform (also called bilateral 
Laplace Transform) is:

    where 𝑠 = 𝛼 + 𝑗𝜔
For this course, we assume that the signal and the system are both causal, i.e. x(t) = 
0 for all t < 0.  Therefore we get the equation shown in the slide, where the limits of 
integration is from 0 and NOT -∞.
Similar to Fourier domains, we can transform input signal x(t)  to the Laplace or s-
domain as X(s), and we can model the system in the s-domain using its response 
H(s).  This is also called the Transfer Function.    If you known X(s) and H(s), then the 
output in the s-domain Y(s) = H(s) X(s) – very similar to the Fourier analysis we did 
before.

We will consider the relationship (similarity) between Fourier transform and Laplace 
transform later.  For now, you can regard Fourier transform is a special case of 
Laplace transform.  So Laplace is more general.  Laplace transform becomes Fourier 
transform if  𝑠 = 𝛼 + 𝑗𝜔 where 𝛼=0. Then 𝑠 = 𝑗𝜔.

L [x(t)] = X (s) = x(t)e−st dt
−∞

∞

∫
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Laplace Transform (1)

 Laplace Transform is a method that converts differential equations in time-
domain into algebraic equations in complex Laplace variable s-domain.

 Definition of Laplace Transform      is:

𝑠 = 𝛼 + 𝑗𝜔

L

L4.1

ℒ[𝑋 𝑡 ] = 𝑋 𝑠 = (
!

"
𝑥 𝑡 𝑒#$%𝑑𝑡 ℱ 𝑥 𝑡 = (

#"

"
𝑥 𝑡 𝑒#&'%𝑑𝑡

Fourier Transform

s-domain
analysis

H(s)
! "! " L

X (s)
! "! "L-1

Y (s) = H (s)X (s)

 Once transformed to the s-domain, analysis and prediction of the 
system becomes easy if we know the system’s characteristic H(s), 
which is also called the transfer function (more later)



Before we go any further, let us consider the Laplace transforms of interesting 
signals and functions.  
First, you must remember that Laplace transform, just like Fourier, obeys the law of 
linearity – it is a linear tranform.
Now let us consider the Laplace transform of an impulse d(t).  This simple 
integration shows that:
This is similar to the case
of Fourier transform shown in Lecture 4, slide  7.

The Laplace transform of a unit step signal u(t) is  !".  Again you can derive this 
through simple integration. Remember that e-st è 0 when t è∞.

! " #$ %!δ ⇔L

Lecture 7 Slide 12PYKC 28 Jan 2026 DE2 – Electronics 2

Laplace Transform (2)

 Laplace Transform obeys laws of linearity:

 The Laplace transform of an impulse function:

 The Laplace transform of a unit step function:  

L4.1



Now consider Laplace transform of a causal exponential signal eat u(t). (Note that 
multiplying eat by u(t) makes the signal causal because u(t) chops off everything 
where t < 0.)

Again simple integration yields the result you see here.

From this, we can also derive the Laplace transform for a causal cosine signal at 
frequency w0.

Lecture 7 Slide 13PYKC 28 Jan 2026 DE2 – Electronics 2

Laplace Transform (3)
 Laplace Transform of eat u(t):

 Laplace Transform of cos w0 t u(t):

L4.1



We can also derive the Laplace transform for a function.  For example, what is the LT 
of a differentiation function d/dt?

As shown here, the result is also pretty simple. x(0) is the initial value of x at t = 0.
If x(0) = 0, i.e. zero initial condition, then L(dx(t)/dt) = s X(s). This is a very important 
result.
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Laplace Transform (4)
 Laplace Transform of a differentiator  :

 It can be shown (using integration by parts) that this result in:

 If x(0) = 0 (i.e. zero initial condition), then

 Therefore, differentiation in the time domain is multiplication by s in the s-
domain: 

L[dx(t)
dt
]= dx(t)

dt
e−st dt

t=0

∞

∫

!x(t) = dx(t)
dt

L[ !x(t)]= sX (s)− x(0)

L[ !x(t)]= sX (s)

ℒ



Similarly, we can compute the Laplace transform of the integration function.  This is 
slightly more complicated.  

We first express the integration of x(t) as g(t):

This leads to:

If we now take Laplace transform on both sides, we get:

Therefore, LT of an integrator is the same as multiplying the input X(s) by 1/s in the 
s-domain.

  

g(t) = x(τ
τ=0

t
∫ )dτ

x(t) = dg(t)
dt

,    and   g(0) = 0

L[x(t)]= L[ !g(t)]= sG(s)− g(0) = sG(s)
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Laplace Transform (5)
 Laplace Transform of an integrator                       :

 From last slide

 Therefore

 Therefore, integration in the time domain is multiplication by 1/s in the s-
domain: 

x(τ
τ=0
t
∫ )dτ

L[x(t)]= L[ !g(t)]= sG(s)− g(0) = sG(s)

Let  g(t) = x(τ
τ=0
t
∫ )dτ

then   x(t) = dg(t)
dt

,    and   g(0) = 0

L[g(t)]= 1
s
X (s)

ℒ



The table of Laplace transform pairs (going both directions) is taken from Lathi’s 
book.  The first TWO shown here are useful, particularly for signals and systems.
The first pair is the impulse function.  The LT is the constant 1.
Pair 2 is the LT of the unity step function, and we have seen in L6 S13 that this is 
computed to be 1/s.
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Laplace transform Pairs (1)

 Finding inverse Laplace transform requires integration in the complex 
plane – beyond scope of this course.

 So, use a Laplace transform table (analogous to the Fourier Transform 
table).

L4.1

*
*



Pair 5 here is MOST important.  You will find that most systems will have terms in 
the form of !

"#$ in the s-domain.  The time domain equivalent of this is a causal 
exponential function 𝑒$%𝑢(𝑡).  The unity step function u(t) makes this causal, 
meaning that it is zero for t < 0.   The term 𝑒$% is the general solution for most 
differential equations.  It represents the natural response of many physical systems.
Pairs 8a and 8b are also important because they represent the LT of causal sine and 
cosine waveforms.

Finally, 9a and 9b represents exponential decaying, causal sine and cosine, 
something that occurs frequently in the physical world.
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Laplace transform Pairs (2)

L4.1

*

*

*
*
*



Now we are ready to generalize.  Assuming zero initial condition, L[dx/dt] = sX(s), it 
follows that L[d2x/dt2] is s2X(s) ….. L[dkx/dtk] is sk X(s).

So let us take our mechanical system previously considered in Slide 10.  The second-
order differential equation:

Can be converted to the Laplace s-domain (zero initial condition) as:

Re-arrange this a bit, and express this as  OUTPUT/INPUT in the s-domain, we get:

This is a very important results.  H(s) is known as Transfer function, and it 
characterizes the system in the s-domain as a 2nd order polynomial function in the 
complex Laplace variable s.  This is an algebraic equation.  Since Y(s) = H(s) X(s), a 
simple multiplication, we can predict the output by simple algebraic calculations. No 
more fiddling with differential equations!

M  !!x(t)+ Kd !x(t)+ Ksx(t) = F (t)

Ms2X (s)+ KdsX (s)+ KsX (s) = F (s)

H (s) = X (s)
F (x)

=
1

Ms2 + Kds+ Ks
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Laplace Transform vs Differential Equations

 Since 

     we can generalise higher order differential as: 
 Therefore, consider the mechanical system in slide 10:

 Apply Laplace transform assuming zero initial condition:

M  !!x(t)+ Kd !x(t)+ Ksx(t) = F (t)

Ms2X (s)+ KdsX (s)+ KsX (s) = F (s)

𝑀𝑠! + 𝐾"𝑠 + 𝐾# 𝑋 𝑠 = 𝐹(𝑠)

⟹ 𝐻 𝑠 =
𝑋(𝑠)
𝐹 𝑠

=
1

𝑀𝑠! + 𝐾"𝑠 + 𝐾#

ℒ
𝑥 𝑡
𝑑𝑡 = 𝑠𝑋(𝑠)

𝑑$

𝑑𝑡$
	 ↔

ℒ
	 𝑠$

H(s) is
TRANSFER FUNCTION



A torsion system with a heavy wheel W has a moment of inertia J. It is connected to 
a stationary anchor through a shaft S with a shaft stiffness of k as shown in Figure 
Q4.  The movement of the wheel is damped by a friction pad F with a damping 
coefficient of c.  An external torque T is acting on the wheel in the direction shown.  
The angle of rotation of the wheel 𝛼 is measured from its stationary condition.  The 
relationship between the wheel angle 𝛼 and the external torque T is given by the 
following equation:

Instead of using differential equation to model the system, we can take Laplace 
Transform on both sides of the equation:

Now we can derive the transfer function. 𝐻 𝑠 = -./.0 1
23/.0 1

= 4 1
5 1

Hence, we turn a differential equation in time domain to an algebraic equation in 
complex frequency  s-domain. 

𝑇 − 𝑘𝛼 − 𝑐 64
60
− 𝐽 6

!4
60!

= 0 

𝐻 𝑠 =
𝛼 𝑠
𝑇 𝑠

=
1

𝐽𝑠" + 𝑐𝑠 + 𝑘
=
1
𝑘

𝑘
𝐽

𝑠" + 𝑐𝐽 𝑠 +
𝑘
𝐽

𝑇 𝑠 − 𝑘𝛼 𝑠 − 𝑐𝑠𝛼 𝑠 − 𝐽𝑠7𝛼 𝑠 = 0
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Using Laplace Transform to model a system
 Here is another mechanical system with a wheel (taken from past year’s 

examination paper):

 The relationship between the wheel angle 𝛼 and the external torque T is 
given by the following equation:

   𝑇 − 𝑘𝛼 − 𝑐 !"!# − 𝐽
!!"
!#! = 0 

 Apply Laplace transform assuming zero initial condition:

𝑇 𝑠 − 𝑘𝛼 𝑠 − 𝑐𝑠𝛼 𝑠 − 𝐽𝑠$𝛼 𝑠 = 0
   Hence,

𝐻 𝑠 =
𝛼 𝑠
𝑇 𝑠

=
1

𝐽𝑠" + 𝑐𝑠 + 𝑘



Here are the three things that you should know and remember, and even better, 
understand.
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Three Big Ideas
1. Laplace transform is useful for analysing systems. It maps time domain 

behaviour to the complex frequency s-domain where 𝑠 = 𝛼 + 𝑗𝜔.   This 
contrasts with Fourier transform which maps to frequency (or 𝜔)	domain.

2. Laplace transform  converts mathematical models of real systems described 
using differential equations in time domain to algebraic equation in s-domain.  
This is possible because:

    ℒ "
"0 = 𝑠   and   ℒ "%

"0% = 𝑠!

3. Transfer function of a system H(s) is the Laplace transform of the output 
signal Y(s) divided by the Laplace transform of the input signal X(s):

   𝐻 𝑠 = 120320	5(#)
89320	:(#)


